
International Journal o/" Thermophysics. Vol. 15, No. 2, 1994 

Phonon Scattering by Neutral Donors in 
n-Type Silicon 

D.  P. W h i t e  ~ 

Received October 8. 1993 

The scattering of phonons by neutral n-type impurities in silicon is studied. 
Following Keyes, who determined the phonon relaxation time for scattering by 
neutral impurities in n-type germanium, the relaxation time for the silicon band 
structure is developed. This scattering comes about due to the large effect of 
strain on the hydrogen-like donor ground-state energy level. The change in 
energy of the ground state due to the strain caused by phonons is calculated and 
the resulting phonon scattering relaxation rate is derived. 
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I. I N T R O D U C T I O N  

Neutral  donor  scattering was first seen by Goff  and Pear lmann [ 1 ]  in 
germanium at low temperatures,  and a theory was given by Keyes [2] .  
This theory applies to lightly doped samples in which the impurity wave 
functions are localized. This theory accounts  for the large amount  of 
phonon  scattering in lightly doped germanium at low temperatures. It also 
accounts  for the piezothermal conductivi ty effect in germanium [3] .  Keyes'  
theory applies to Ge and in the present paper the scattering of phonons  by 
neutral n-type impurities in lightly doped silicon is studied and the phonon  
relaxation time is derived. 
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2.  DONOR GROUND-STATE WAVE FUNCTIONS 
AND ENERGIES 

The ground-state wave functions of shallow impurity states in silicon 
are, in the effective mass theory [4-7] ,  given by 

N 

~b(F) = Z ~jF/(?') q~j(/~) ( l )  
/ = 1  

where in this context N is the number of equivalent conduction band 
minima, the ~j are numerical coefficients, ~bj(/~) is the Bloch function at the 
j th  minimum, and the functions Ki(r) are hydrogen-like envelope functions. 
The envelope functions F,(r) are solutions of the effective mass equation: 

IEj(~v)-e~-~-IFj(r)=EF/(r) (2) 
~ r j  

where • is the static dielectric constant of the host material, Ei(k - k~) is 
the energy of the conduction band near k = kj, and E is the energy of the 
donor state relative to the conduction band minimum. In this theory the 
ground state of the impurity is N-fold degenerate, however, when correc- 
tions to the effective mass approximation are taken into account this 
degeneracy is reduced. The remaining degeneracy, and the values of the 
numerical constants 0t, may be determined solely from the symmetry of the 
Hamiltonian of the impurity state, Td [8].  The N degenerate functions 
form the basis of a representation of the group 7",1; this representation 
may be reduced into the irreducible representations of the group and the 
linear combinations of Eq. (I)  belonging to each irreducible representation 
are the ground-state wave functions of the impurity [4].  The wave 
functions corresponding to any one particular irreducible representation 
are degenerate and this remaining degeneracy cannot be lifted by any 
tetrahedrally symmetric perturbation. 

The conduction band minima in silicon consist of six equivalent 
minima along the (100~ axes. In this analysis it is convenient to use as 
basis wave functions a modification of the "decoupled basis" introduced by 
Price [9]  in his theory of thermoelectric effects in Ge and used by Keyes 
[2] in his study of low-temperature thermal conductivity in Ge. The basis 
set to be used in this study of the Si symmetry is 

l 
~,-+ ../~(~'r,ool+~'r ,,.,~) 

1 
=x/~(Fr~oo]~brlool+Fr ,ool~r ~ool) 
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1 
~.;-  ,,,~(¢r,oo1-¢ t,ooll 

1 
=w/~(Ft~oo]~bt,oo]-Ft ,oolCr ~ooll 

etc. In the effective mass approximation there would be no off-diagonal 
terms in the Hamiltonian matrix in this bases, and there would be six 
degenerate ground states. However, in the vicinity of an impurity this 
degeneracy is split through the intervalley interaction due to the impurity 
potential. Price [9] introduced a phenomenological perturbation with off- 
diagonal matrix elements in this basis due to the intervailey interaction; 
this "chemical shift" lifts the degeneracy. In this representation the matrix 
of the Hamiltonian is 

° !) - d  Eo - ' 4  0 0 

- - ,4 E o  0 0 

Ho + H~ = 0 0 Eo + fl 0 (3) 

0 0 0 Eo+fl  

0 0 0 0 E o + ~ ]  

Here H~ is the phenomenological perturbation introduced by Price 
which is responsible for the off-diagonal matrix elements A and #, and '4 
and ~ are due to the overlap attributed to the intervailey interaction. The 
off-diagonal elements of the impurity Hamiltonian connecting the t/,; 
( j =  x, .v, z), and those connecting any ~i  with any ~j+, are zero by 
virtue of the symmetry of the conduction band minima and the chosen 
form for the basis set of t/,! +. ~ The best demonstration of the adequacy / 

of the phenomenological Hamiltonian in germanium is provided by the 
piezothermal conductivity experiments of Fritzsche [10, 11] and Keyes 
and Sladek [3]. 

The eigenvalues of this Hamiltonian matrix are a singlet of energy 
Eo-2 '4 ,  a doublet of energy Eo +'4, and a triplet of energy Eo + #. It is 
known that A is positive [12] and thus that the singlet is the state of 
lowest energy and also that the doublet and triplet states have nearly the 
same energy, with the doublet lying slightly higher than the triplet [12]. 
For phosphorous donors in si 3A ,~ 13 meV, and ~ - ' 4  ..~ 1.3 meV [12]. 
The eigenvectors associated with these energy levels are 



3 6 8  White 

I 7,,. + 
~us = ---= (~u,~- + ~,~ + ) 

~/3 

1 
~ol  -~2 1~+ = , - ~ , . )  

I 
~D_, = ( ~  + ~ ,+  _ . ~ u .  ) 

~T, = 'F. 

ll/V2 = I t / .  

~v3 = ~-. 

(4) 

where the subscripts S, D, and T refer to the singlet, doublet, and triplet 
states, respectively. In this new basis the Hamiltonian matrix H o +  H~ is 
diagonal. 

In the presence of a strain the band edge energies will change [-9, 13] 
and thus the energies of the ground states will change. The change in 
energy of the functions ~ + "  ~ in this analysis is given by [13] 

c+, I f = . q ( r ) ~ ) + .  ~'dV (5) Ui = 

where -: is the deformation potential tensor and q(r) is the strain tensor. 
The strain of interest here is the strain due to phonons and the perturba- 
tion due to the phonons is small compared to the intervailey interaction. It 
is also noted that u,+ = u,  = u,,  etc., because the strain energy comes from 
the distortion of each band edge minimum and thus there are no cross 
terms between, for example, F[t~l~bflO~l and F r . .~ ]~[  .~1" Thus the 
change in energy of the singlet state to second order in the strain is 

1 1 
i)E~"nt~'~' = ~-3 ( I t ,  + ttv . . . .  q- It: )-- ~ [3 ( t ,  2, + tt~ q-t l~)-- (U,. + t,,. + It, )2"] (6) 

3. EVALUATION OF STRAIN ENERGY 

The change in energy given in Eq. (6) has terms which are second 
order in the strain, and the theory of Klemens [14, 15] shows that these 
terms will lead to a scattering of phonons. 

To evaluate this change in energy of the ground state it is necessary 
to calculate the u i given in Eq. (5). The deformation potential is given 
by [-13-] 

_.- i= . - j  I + ~ u a ' a  i (7 )  
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where a i is the unit vector along the axis of revolution of valley i, "~'d is the 
dilatation deformation potential, -u  is the shear deformation potential, and 
1 is the identity matrix. Thus, ~[ux~]=Z[-"~], =[oto]==-[o-.q and 
.--root1 .--foo tl The displacement vector may be expanded in terms of 
phonon raising and lowering operators as 

d ( r )=  I - - Z  ~'j(-/q ie iq'r (8) 
N~G q. j 

where the . /= _+1, +2,  _+3, aq./ are the phonon raising and lowering 
operators, a / ( - q ) = a ~ ( q ) ,  ~i is the polarization vector, and G is the 
number of unit cells in the lattice. The raising and lowering operators obey 
the commutation relation [aq. r a*q.j] = - h / M c o ( q ) ,  where M is the mass of 
a unit cell, and to(q) is the frequency of the phonon with wave vector q. 
The ground-state envelope functions F(r) are of the form 

F(r) (ha3)1 2exp - (9) 

where ao=h'-~,'/merre'- is the Bohr radius of the orbital in the effective 
mass approximation, ~, is the static dielectric constant, m ~  is the effective 
electronic mass, and e is the electronic charge. Using Eqs. (8) and {9) the 
change in the ground-state energy which is second order in the strain is, 
from Eq. (6), 

1 - 2  
- - ~  ~ E2(z ,z ' ,+  " ' + z . c '  6E([':~:-~) 27A G . . Z2Z2  Z.~) 

q , /  q . /  

- z,tz'~ + z l , ) -  z~(z', + z~ ) -  z3(z', + z'2)] 
• a ~ q - ' ~  - a - - 

X [Iq. j t lq ' . l '  1 + 1 + - -  (10) 

where Z, = e ,q i .  

4. CALCULATION OF P H O N O N  RELAXATION TIME 

The expression in Eq. (10) is second order in the phonon operator. 
Klemens has shown [14, 15-I that if the perturbation Hamiltonian is of the 
form 

H ' =  ~ c2(q, q')aqa*q I l l )  
q.q 
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then the relaxation time of the mode q is given by 

1 V "~ 1 1 q ,  
E d s ; -  I,.:lq, II: 1121 

g / U,¢ 

where for the receiving mode./" represents the polarization, {o' = {o, v' x is the 
group velocity of the phonon,  l / is the crystal volume, and the surface 
integral is over surfaces of constant co. From Eq. (10), 

ce{q, q')-" (2~--~) 2 - 4  
G-" 

x I-A/.{-' + B/.'_,-' + C/.;-" + D/.]/.'~ + EX]/`_:~ + F/`2/.~] 

× l +  (13) 

where 

A =4X~ +g~ +g~ + 2 Z : Z 3 - 4 / . , X 2 - 4 Z t Z 3  

B = 4Z~ +/`~ + Z~ + 2/.,/..~ - 4/.,/.2 - 4/.:/.3 

C = 4,Z~ +/.~ +/.~ + 2/.,/._, - 4/., g3 - 4/.:/.3 

D = -4Z~ - 4/.~ + 2/.~ + 10/.,/.2 - 2/.,/.3 - 2/._,/.3 

E =  -4/ .~ - 4/.~ + 2/.~ + I0/.,/`3 - 21.,/.2 - 2/._,/.s 

F =  -4/.~ - 4/.~ + 2/.~ + 10/,2/.3 - 2/.t Z2 - 2/,,/.s 

Note that these parameters do not contain any primed variables. By 
substituting Eq. (13) into Eq. (12). the phonon relaxation time can be 
found. 

The integral in Eq. (12) becomes 

dSS.--  Ic2(q. q ') l-  = -  1 + - - 7 /  q6 
p ,  U i . I  

x ( I + I I + I I I + I V + V + V I )  

where 

I =4~e'7c! q- sinOdO&o, 

~:~ q~ sin 0 dO d~o, Ill q- q" 

v = E  ~ ':":3q'q2 sin O dO &o, q- q- 

,l=B~eitc~;-sinOdO&o 

(14) 

e.2qtq2 I v = D ~  ~' q2 sinOdOdq9 (15) 

F £ c,eqqlq,_ 
VI = q-5 y q ~  sin 0 dO dtp 
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Table I. C o m p o n e n t s  of the Wave  Vector  and  the Longi tud ina l  and 

Transverse  C o m p o n e n t s  of the Pola r iza t ion  Vector  

371 

Polar iza t ion  vector, g 

Wave  vector, q Longi tud ina l  Transverse  1 Transverse  2 

qx = q sin 0 cos to ~:~ = sin 0 cos tO r,'~ = sin tO e,'~' = cos 0 cos ~p 
q_, = q sin 0 sin tO r., = sin 0 sin tO r.', = - c o s  tO t:" = cos 0 sin ~o 

q~ = q cos tO ~:~ = cos 0 t:~ = 0 e.:~' = - s i n  0 

Note  that the integration variables are no longer primed for convenience of 
notation. The components  of the polarization vector and the wave vector 
are functions of 0 and ~o; the components  in terms of the integration 
variables are given in Table I. Table II gives the values of the integrals in 
Eqs.(15). It should be noted that the polarizations of the transverse 
branches are arbitrary and that any mutually or thogonal  set would give 
the same results; this set was chosen for convenience. Using these values 
the relaxation time given in Eq. (12) is found to be 

2 1 -" - a 6 3 1 + to 4 
- N . j -~ - - r i M  " 

, 3 - - Z I Z ~ - - - ' Z I ~ 3 - - Z ~ - Z 3 )  116) 

Table II. The Values of the Integrals  Given  in Eqs. {15l for the 

C o m p o n e n t s  Given in Table  I 

In tegral  L TI  T2 

.44 AI A 3 
I ~ . ~ n  q-~'~ n ~ . ~ n  

B 4  B I  B 3  
II - - - n  - - - n  

q-" 5 q-" 3 q" 15' rt 

C 4  C 8  
I l l  - - - n  0 q " 5  t -~]5  rt 

D 4  D I  D 1 
IV ~ - - n  - - - - n  - - - - n  

q-'15 q2 3 q2 15 

E 4  E 4  
V ~ n  0 q" 15 ~ 

E 4  E 4  
V I q~ ~ rt 0 - q-"5 1"-5 rt 
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where Nnd is the density of neutral donors. The term in square brackets is 
a dimensionless factor, the value of which is dependent on the direction of 
the phonon wavevector and the polarization. In polycrystalline materials 
the random orientation of the grains will have the effect of averaging over 
all phonon directions. In this case averaging the terms in square brackets 
over all directions, it is found that this term has an average value of 2/5 for 
longitudinal phonons and 3/5 for transverse phonons. Substituting these 
factors into Eq. (16), the averaged relaxation time becomes 

-- (16 ") " " 8 
1 N,,j ~ ~ + 1 + tl) 4 
"t" 

(17) 

The change in energy of the doublet state will also have terms second order 
in the strain energy, and as in the case of the singlet state this will give rise 
to phonon scattering. The relaxation time for scattering by this state has 
not been calculated in detail but it will be assumed that the change in 
energy, and hence the scattering rate, will be of the same order as that 
calculated for the singlet state. The triplet state does not have terms which 
are second order in the strain and thus will not give rise to phonon 
scattering. 

5. DISCUSSION AND CONCLUSIONS 

Tile form of the reciprocal relaxation time given in Eq. (17) for the 
scattering of phonons by the ground state of neutral n-type impurities in 
silicon has several features of interest. The reciprocal relaxation time goes 
as ~o 4, which is the form for point defect scattering: however, unlike normal 
point defect scattering, which continuous to increase in strength for higher- 
frequency phonons, the factor [I + (a~q2/4)] n cuts this scattering mecha- 
nism off, and thus this scattering is appreciable only for low-frequency 
phonons. 

The neutral donor scattering relaxation time was used by White et al. 
[16] to calculate the effect of neutral donors on the thermal conductivity 
of heavily doped S i -Ge  alloys at high temperatures. It was found in that 
case that neutral donors would have little effect on the thermal conduc- 
tivity above 300 K. This was attributed to several factors including the fact 
that this mechanism competes with phonon-electron scattering and mass 
defect-distortion scattering. Phonon-electron scattering, which scatters 
phonons only in the low-frequency range, is a function of the number of 
electrons in the conduction band: at lower temperatures fewer electrons 
will be present in the conduction band and scattering by this mechanism 
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will be less strong. The maximum phonon frequency effected by phonon-  
electron scattering is given by [16],  coc=(4nt,/h) 2 t 2 t ~ ,  where v is 
the phonon velocity, h is Planck's constant, m is the electron mass, K is 
Boitzmann's constant, and T is the absolute temperature. This cutoff 
frequency decreases with temperature and thus decreases the range over 
which phonon--electron scattering competes with neutral donor scattering. 
Mass defect-distortion scattering is very strong in these alloyed materials 
and also competes with neutral donor scattering. Table Ill gives the 
phonon-electron cutoff frequency, and the inverse relaxation times for mass 
defect-distortion scattering ('t" m 1) and neutral donor scattering ( rnd I ) a t  the 
phonon-electron cutoff frequency for an 80% Si/20% Ge alloy. The mass 
defect scattering relaxation time was calculated as in Ref. 16. In this case a 
donor concentration of Na = 1026m .3 was assumed and the neutral donor 
concentration, given by N d -  n~, where no is the free electron density, was 
calculated using the equation [17] 

2Nd Nc 
no = (N¢ + 0.27Nd) + [(N c - 0.27Nd) 2 + 8NdNc exp(EJKT)] i/2 (18) 

which assumes no compensation, where Nc=2[2nmKT/h2] 3/2 and Ed is the 
depth of the donors below the conduction band, taken as 0.04 eV in this 
case (approximately the depth of phosphorous donors in silicon). From 
Table III it is seen that at 300 K neutral donor scattering is not as strong 
as mass defect scattering at the cutoff frequency. At lower temperatures the 
neutral donor scattering becomes stronger than the mass defect scattering 
at the cutoff frequency. The maximum of the inverse neutral donor relaxa- 
tion time is centered at a phonon frequency of 2.7 x 10 ~2 s -  ~, and it is seen 
that as the temperature decreases, the cutoff frequency becomes less than 
this value. Along with these results it is noted that at lower temperatures 
the high-frequency portion of the phonon spectrum is not significantly 
occupied, thus increasing the overall percentage of heat-carrying phonons 

Table III. Calculated Values of the Phonon-Electron Cutoff Frequency, Mass Defect-Distor- 
tion Scattering Inverse Relaxation Time, and Neutral Donor Scattering Inverse Relaxation 

Time at ¢0~ for an 80% Si/20% Ge Alloy with a Donor Concentration of 1026m 3 

T(K)  m,(s  I) r ,~l ls  i I r .al ls  i) 

300 5.63x 1012 1.6x 108 7.9× 107 
100 3.24 x 10 t2 1.6 x 108 5.3 x 108 
50 2.30 x 1012 1.6 x 108 5.4 x 108 

841) 15 2-13 
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effected by neu t ra l  d o n o r  scat ter ing.  T h u s  neu t ra l  d o n o r  sca t te r ing  will 
begin to have an  effect on  the the rmal  conduc t i v i t y  at  these lower  
t empera tures .  
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